Constructing Probabilistic Process Models Based on Hidden Markov Models for Resource Allocation

نویسندگان

  • Berny Carrera
  • Jae-Yoon Jung
چکیده

A Hidden Markov Model (HMM) is a temporal statistical model which is widely utilized for various applications such as gene prediction, speech recognition and localization prediction. HMM represents the state of the process in a discrete variable, where the values are the possible observations of the world. For the purpose of process mining for resource allocation, HMM can be applied to discover a probabilistic workflow model from activities and identify the observations based on the resources utilized by each activity. In this paper, we introduce a process discovery method that combines an organizational perspective with a probabilistic approach to address the resource allocation and improve the productivity of resource management, maximizing the likelihood of the model using the Expectation-Maximization procedure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introducing Busy Customer Portfolio Using Hidden Markov Model

Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...

متن کامل

Latent Dirichlet Markov Allocation for Sentiment Analysis

In recent years probabilistic topic models have gained tremendous attention in data mining and natural language processing research areas. In the field of information retrieval for text mining, a variety of probabilistic topic models have been used to analyse content of documents. A topic model is a generative model for documents, it specifies a probabilistic procedure by which documents can be...

متن کامل

A Bi-level Formulation for Centralized Resource Allocation DEA Models

In this paper, the common centralized DEA models are extended to the bi-level centralized resource allocation (CRA) models based on revenue efficiency. Based on the Karush–Kuhn–Tucker (KKT) conditions, the bi-level CRA model is reduced to a one-level mathematical program subject to complementarity constraints (MPCC). A recurrent neural network is developed for solving this one-level mathematica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014